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The importance of the oceans
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Importance of the ocean

Global carbon budgets

The oceans and atmosphere provide the
two main observational constraints on
global carbon budgets use to guide

policy.
Advising governments to guide and

motivate action.

Food security and conservation
Identify regions and ecosystems at risk.

GLOBAL
CARBON

project




Global Carbon Budget — advising global policy

How uptake is partitioned between the atmosphere, land, and ocean

sources <= good estimates

< poor estimates

< modelled

sinks

GLOBAL
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project
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Ocean data and observations are a key constraint on global carbon budgets




@ Current ocean carbon sink estimates...

Is there a growing divergence between

Ocean Sink (Socean) (Friedlingstein et al. 2023) the observation-based products and
________ 1COnproduct global biogeochemical models?
41 — GOBMs
=— QOcean Sink (Sacean) .
N aﬂ_‘/ Observation-based
3 2 ';\ Model-based
_ .- '3Z | Growing realisation, the uncertainties for
oL - | _l, = | the observation-based products maybe
o 0 2000 2020 underestimated...




Exchange across the air-sea interface
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Source: Transfer across the air-sea surface, (2013), Springer.
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Competing near-surface temperature controls

Focus of W2020" and D2022¢
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Can we investigate this in situ?




ESA OceanSatFlux and AMT4CO2FIlux: in situ bulk
and eddy covariance gas fluxes and SST skin
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ESA OceanSatFlux and AMT4CO2FIlux: in situ bulk
and eddy covariance gas fluxes and SST skin
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Supports an increase in the
Atlantic CO, sink of ~0.03 Pg C
yr1 (~7% of the Atlantic Ocean
sink).

(mmol m=2 d~1)
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Supports an increase in the
Atlantic CO, sink of ~0.03 Pg C
yrt (~7% of the Atlantic Ocean
sink).

Supports 0.18 Pg C yr! global bias
due to neglecting natural vertical
temperature gradients (~6 %
underestimation of the global
ocean sink).

Agrees with theory, lab work,
previous observation-based global
assessments and recent modelling
study advances.
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Which climate record should we use?

Most groups in the Global Carbon
Budget assessments use OISST.

1980s to 2015 = CCl and OISST
produce similar results.
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Which climate record should we use?

Most groups in the Global Carbon
Budget assessments use OISST.

1980s to 2015 = CCl and OISST
produce similar results.

But OISST and CCl results diverge
after 2015, causing a 8% change in
ocean sink by 2022.
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Which climate record should we use?

Global bias between OISST and
CCI does not appear to change
during this period, but regional
changes in the temperate in
northern latitudes and Southern
Ocean could cause the observed
discrepancy.
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Which climate record should we use?

Global bias between OISST and
CCI does not appear to change
during this period, but regional
changes in the temperate in
northern latitudes and Southern
Ocean could cause the observed
discrepancy.

These regional biases increase
from 2015 through to 2021, which
combined with high gas exchange
in polar regions could explain the
shift between OISST and CCI
results...
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Standard framework for uncertainties




@ Standard framework for uncertainties

RAT*(Roea—(1—£)+Ryty)

A need for complet [SST = - ds in recentyears

These uncertai ponent maybe

These uncertainty bug etrology community.

In situ observatid
Fiducial Refereé
Measureme

Example for skin
temperature
observations from
Wimmer and Robinson

Ocean colour
radiometers
(Bialek et al. 2020)

—( Thermistor half bridge mhmy)

(2016; Figure 5)
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@' Standard framework for uncertainties

A need for complete uncertainty budgets has been identified and adopted by many fields in recentyears

These uncertainty budgets assess all sources of uncertainty, however small the component maybe

These uncertainty budgets follow the ethos of the BIPM (BIPM, 2008) developed by the metrology community.
Uncertainties are determined as either:
Type A: calculated uncertainties using standard propagation techniques
OR
Type B: uncertainty determined by other techniques/expert judgement

/ \

[ Sf'tu o_bservatlons as Satellite based products
Fiducial Reference

These principles and

Measurement :
Ocean Colour Climate Change uncert_alnty fram e_vvork can be

S T —— Initiative (CCI) applied to the air-sea CO,

Oce_an colour observations (Sathyendranath et al. 2019) : fluxes,_ data-product
_radiometers (Wimmer and f mterpolatlpn schemes and
(Bialek etal. 2020) | | o uoc o 2016) Sea surface temperature the global integrated ocean

' CClI sink
(Merchantet al. 2019)




@' The air-sea CO, flux uncertainty framework




@” Spatial and temporal fCO, ,, uncertainties
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Spatial and temporal air-sea CO, flux uncertainties
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Spatial and temporal air-sea CO, flux uncertainties

Latitude (°N)
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Spatial and temporal air-sea CO, flux uncertainties
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& conclusions ~/ceanlCu

Understanding Ocean Carbon

* in situ evidence supporting theory of how near-surface temperature gradients alter
atmosphere-ocean CO, gas fluxes and ocean carbon sink estimates.

Shutler, JD, et al., (2024). The increasing importance of satellite observations to assess the ocean carbon sink and ocean
acidification. Earth-Science Reviews, 250, 104682-104682

Co-funded by UK Research
the European Union and Innovation




& conclusions ~JceaniCU

Understanding Ocean Carbon

* in situ evidence supporting theory of how near-surface temperature gradients alter
atmosphere-ocean CO, gas fluxes and ocean carbon sink estimates.

« SST climate data records have diverged since 2015 influencing carbon assessments and
resulting policy advice.

« Seems to be caused by regional biases at high latitudes.

« Conclusionsupported by a comprehensive uncertainty assessment (spatially and temporally
varying air-sea CO, flux uncertainties).

Shutler, JD, et al., (2024). The increasing importance of satellite observations to assess the ocean carbon sink and ocean
acidification. Earth-Science Reviews, 250, 104682-104682

Co-funded by UK Research
the European Union and Innovation




@' Conclusions S ceanlICU

Understanding Ocean Carbon

in situ evidence supporting theory of how near-surface temperature gradients alter
atmosphere-ocean CO, gas fluxes and ocean carbon sink estimates.

« SST climate data records have diverged since 2015 influencing carbon assessments and
resulting policy advice.

« Seems to be caused by regional biases at high latitudes.

« Conclusionsupported by a comprehensive uncertainty assessment (spatially and temporally
varying air-sea CO, flux uncertainties).

» Identifies the importance of the careful choice of consistenttemperature data records.
* Need for SST community to help guide, support and collaborate with the carbon community
(Shutler et al., 2024, IOCCG, CEOS) through an expert guidance group.

Shutler, JD, et al., (2024). The increasing importance of satellite observations to assess the ocean carbon sink and ocean
acidification. Earth-Science Reviews, 250, 104682-104682

Co-funded by UK Research
the European Union and Innovation







@ Integrating uncertainties (for the net sink result)

Integration of these uncertainty components globally is not a trivial matter. Some
uncertainties are likely to be correlated globally (blue boxes), but others may only
correlate regionally (green boxes) or locally
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A semi-variogram
analysis with a Monte
Carlo propagation used
to estimate these
spatially correlated
components




Integrating into global uncertainties
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@ Integrating into global uncertainties

Component This study (1o) | GCB estimate
(Pg Cyrt) (Pg Cyrt)
Gas transfer 0.47 0.2 Total derived mean
Wind 0.14 0.4 uncertainty this study:
Seaice 0.003 N/A 0.76 Pg C yr'l (10_)
Solubility skin 0.08 N/A
Solublity subskin 0.07 A Compared to GCB fixed value:
In situ fCO; ) 0.20 0.2
Riverine flux 0.15 (10) 0.3 (20)
Standard deviation of ensemble N/A 0.3

Total 0.76 0.6



The current approach for observation-based

product uncertainties




CCISSTv2vs CCISSTv3-Temporal changes

Comparing CCISSTv2 and v3 to
the OISST temporal changes are

observed...
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CCISSTv2vs CCISSTv3-Changes intheglobal air-

CCIv3 (green) shows generally
weaker CO, sink globally to v2

Periods where CCI suggest weaker
CO, sink compared to OISST
(orange) coincide with periods CCI
Is warmer than OISST
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Spatial and temporal fCO, ,, uncertainties




@‘ Integrating uncertainties (for the net sink result)

What do we mean by spatially correlated uncertainties?

Spatial structures where uncertainties are correlated, but over larger scales become

decorrelated
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